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Organocuprates. A Stereoselective Synthesis of Axial 
Alcohols 

Sir: 

The addition of nucleophiles to ketones is an important 
method for the introduction of stereochemistry into organic 
molecules. In contrast to the numerous highly stereoselec­
tive reducing agents which have been developed,1 the avail­
ability of reagents for the addition of unhindered alkyl nu­
cleophiles to ketones with high stereoselectivity is limited.2 

We wish to report here that the reagent prepared by mixing 
lithium dimethylcuprate3 with methyllithium reacts with 
cyclohexanones to produce axial alcohols with high stereo­
selectivity and in high yield. 

The addition of a primary organolithium or Grignard re­
agent to an unhindered cyclohexanone generally results in a 
mixture of epimeric products. For example, 4-?er?-butylcy-
clohexanone reacts with methyl magnesium iodide, methyl-
lithium, or dimethylmagnesium to give only 51-70% axial 
alcohol.4 In an effort to improve the stereoselectivity of this 
reaction, a new approach to the problem was considered. 
We reasoned that if an organocuprate could be induced to 
react with a saturated ketone,5 those factors which give 
high stereoselectivity to the reaction of cuprates with en-
ones6 might allow a stereospecific synthesis of substituted 
alcohols. While a variety of methods for effecting this 
transformation may be envisioned, we have examined an or-
ganocuprate-mediated addition of methyllithium to a num­
ber of cyclohexanones at low temperature;7 When 4-tert-
butylcyclohexanone was treated with a 3:2 mixture8 of lithi­
um dimethylcuprate and methyllithium, a crystalline prod­
uct was isolated in 91% sublimed yield. This material con­
tained no starting ketone and consisted of a mixture of ep­
imeric methyl carbinols, 94% of which was the expected 
;/-fl«i'-4-?er/-butyl-l-methylcyclohexanol.9 This result com­
pares with other organometallic methylations as shown 
below. 

Me 

O 

f-Bu 
RM 

OH Me 

f-Bu 
Me 

+ J-Bu 
OH 

RM = MeMgI (5°)4" 
= Me,Mg4h 

= MeLi (5°)" 
= MeLi (-78°) 
= MeLi-MeXuLi (-70°) 

51% 
70% 
65% 
79% 
94% 

49% 
30% 
35% 
21% 
6% 

We have also observed a similar improvement in stereo­
chemical control for the methylation of 4a-methyl-fra/w-2-
decalone10 

RM 

Me Me 

Me + HO 

OH Me 

RM = MeLi (-78°) 76% 24% 
= MeLi-Me2CuLi (-70°) 90% 10% 

and 2-methylcylohexanone 

O 

11.Me 
HO Me Me OH 

RM 
V^Me V^Me 

RM = MeMgI (0°)" 84% 16% 
= MeLi (-78°) 92% 8% 
= MeLi-Me2CuLi (-70°) 97% 3% 

Interestingly, MeLi-Me2CuLi provides no stereochemical 
improvement over methyllithium in its reaction with 2-
methylcyclopentanone. Both reagents give approximately 
70% attack trans to the methyl substitutent at - 7 0 ° . 

In each case, the epimeric methyl carbinols were the only 
products detected at greater than 95% conversion of start­
ing ketone. Thus, MeLi-Me2CuLi offers a distinct stereo­
chemical advantage over conventional methylating reagents 
and appears to be the reagent of choice for the high yield 
equatorial methylation of unhindered cyclohexanones. Al­
ternatively it should be noted that improved stereoselectiv­
ity in ethereal methyllithium additions may be obtained by 
conducting the reaction with ketones at low temperature.12 

The detailed structure of this new reagent remains ob­
scure. However, neither dimethylcuprate nor methyllithium 
alone can account for our results since 4-rerf-butylcyclo-
hexanone is recovered unchanged from treatment with the 
former reagent at low temperature and gives different ste­
reochemical results with the latter compound. We feel that 
the most reasonable explanation is that lithium dimethylcu­
prate and methyllithium react to form low concentrations of 
a bulky, highly reactive cuprate having the stoichiometry 
Me3CuLi2 or Me4CuLi3.13 The formation of such higher 
ate complexes has been supported by N M R studies52 and 
by isolation of the corresponding acetylide complexes, 
(RC=C)3CuK2.1 4 In addition, a reagent having the stoichi­
ometry Ph3CuLi2 appears to be more reactive than PI12CU-
Li in metal-halogen exchange reactions and coupling with 
aryl bromides.15 The reaction of a ketone with a dianionic 
trialkylcuprate (or a related higher ate complex) should be 
facilitated since the increased charge on copper should en­
hance either an oxidative addition-reductive elimination se­
quence16 or an electron transfer process.17 Whatever the 
mechanism, it must be fast relative to carbonyl attack by 
methyllithium since the same high stereoselectivity is ob­
tained by the slow addition of methyllithium to a mixture of 
the ketone and lithium dimethylcuprate at —70°. 

The experimental procedure is straightforward and is de­
tailed here for 4-rerr-butylcyclohexanone. Cuprous iodide 
(5.70 g, 30 mmol) was suspended in 100 ml of anhydrous 
ether at 0° under nitrogen. Ethereal (80 mmol) methyllith­
ium (approximately 2 M) was added and the light tan solu­
tion was stirred for 10 min before cooling to —70°.18 4-tert-
Butylcyclohexanone (1.54 g, 10 mmol) in 25 ml of anhy-
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drous ether was then added over a 5-min period with stir­
ring. The solution was maintained at -70° for 30 min and 
was poured into saturated ammonium chloride solution. 
The aqueous layer was separated and extracted with fresh 
ether. The organic phases were combined, dried over mag­
nesium sulfate, and stripped at reduced pressure to a crys­
talline solid, 1.80 g. This material was purified by sublima­
tion (60°, 1 mm) to yield 1.55 g (91%) of 4-ter/-butyl-l-
methylcyclohexanol, mp 62-65° (lit.19 70.5-71° for the 
pure axial alcohol). 

In conclusion, MeLi-Me2CuLi is a highly effective re­
agent for the equatorial methylation of unhindered, confor-
mationally biased cyclohexanones. Further work will in­
clude studies of this reagent with other substrates and the 
stereochemical behavior of a variety of mixed cuprates and 
other transition metal ate complexes. 
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Benzamide Oxygen Exchange Concurrent with 
Acid Hydrolysis 

Sir: 

Although it is generally accepted that bimolecular acid-
catalyzed amide hydrolysis proceeds via a tetrahedral addi­
tion intermediate probably formed from the O-protonated 
amide,1 a number of workers recently have found it difficult 
to rule out the alternate route in which water directly dis­
places an amine molecule from the N-protonated amide.2 

At the basis of this controversy is the fact that, to date, the 
occurrence of carbonyl oxygen exchange concurrent with 
the hydrolysis has not been demonstrated.2a-b-3 Such ex­
change is observed during base hydrolysis,3'4 as well as with 
carboxylate esters in both acid and base solutions,la-5 and is 
usually taken to imply the presence of tetrahedral inter­
mediates.13 We report here that accompanying the acid-
catalyzed hydrolysis of benzamide there is a small, but de­
tectable, amount of exchange. 

This study was carried out using a sample of the amide 
enriched with ca. 90% 18O.6 This was hydrolyzed in 5.9% 
H2SO4 at 85°, and the unreacted amide was recovered7 at 
various times and subjected to direct mass spectrometric 
analysis (Table I). A small, but definite, increase with time 
is seen in the ratio of the intensities of the peaks at m/e 121 
and 123 (molecular ions), indicative of exchange of the 
benzamide oxygen with solvent oxygen. Conversion8 of 
these ratios to per cent 18O shows that there is a decrease of 
about 0.2% 18O for each half-life of hydrolysis. From the 
data can be calculated a rate of exchange of 1.28 X 1O-5 

min-1, V32O the rate of hydrolysis. In control experiments (i) 
the analysis procedure was shown to be capable of repro­
ducing the small differences in 18O content very accurately 
(Table II), and (ii) it was demonstrated that the observed 
decrease in 18O content on hydrolysis cannot have arisen ei­
ther through the work-up procedure or because of revers­
ibility of the hydrolysis reaction.9 

The very small amount of exchange found here shows 
why this was not detected in previous investigations, where 
a much smaller 18O enrichment was used. For example, in 
that study with the greatest enrichment (3%),2a our result 
shows that there was a decrease in 18O content of only 
0.02% (over three half-lives of hydrolysis), not outside the 
limit of experimental error. Interestingly Bender and Ging­
er,30 on the basis of the error in their data, placed a lower 
limit on /CH/&E of 374 (for benzamide under slightly differ­
ent acidic conditions). 

The observation here of the exchange process establishes 
that a tetrahedral intermediate is formed during the acid-
catalyzed hydrolysis of benzamide. Although this species is 
not necessarily on the hydrolysis pathway, it is difficult to 
imagine that this is not the case. In particular the small 
amount of return to amide relative to break-up to products 
(a factor of 160 assuming rapid proton transfer) is precisely 
what is expected for sucfi a tetrahedral intermediate formed 
under acid conditions.1 In such solutions it will exist pre-
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